Functionalization of Ti6Al4V Alloy with Polyphenols: The Role of the Titanium Surface Features and the Addition of Calcium Ions on the Adsorption Mechanism

Author:

Reggio Camilla1,Barberi Jacopo1ORCID,Ferraris Sara1ORCID,Spriano Silvia12ORCID

Affiliation:

1. DISAT Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

2. Centro Interdipartimentale Polito BioMEDLab, Politecnico di Torino, 10129 Turin, Italy

Abstract

Functionalization of medical devices with biomolecules is a key strategy to control implant outcomes, for instance, polyphenols can produce fast osseointegration and reduce both the infection risk and inflammatory response. This paper is designed to evaluate the role of calcium ions and surface features in surface functionalization with a red pomace extract. An in-depth investigation of the binding mechanism between surfaces and polyphenols was also performed. A smooth Ti6Al4V alloy was used as a control substrate and compared with a bioactive and nanotextured chemical-treated Ti6Al4V alloy. Solutions with and without the addition of calcium ions were used for functionalization. The results showed that polyphenols were adsorbed in all cases, but in a larger amount in the presence of calcium ions. The functionalized surfaces were hydrophilic (contact angles in the range of 45–15°) and had isoelectric points at pH 2.8–3.1. The acidic hydroxyl groups on the chemically treated titanium alloy favored the chemisorption of complex compounds of flavonoids and condensed tannins with calcium ions, through a bridging mechanism, and made desorption sensitive to pH. On the smooth surface, the absence of reactive functional groups led to a lower amount of adsorbed molecules and a physisorption mechanism. Selective physisorption of phenolic acids was supposed to be predominant on the smooth surface in the presence of calcium ions in the solution.

Funder

European Commission and Ministero dell’Università e della Ricerca

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3