Highly Selective CO2 Hydrogenation to Methanol over Complex In/Co Catalysts: Effect of Polymer Frame

Author:

Sorokina Svetlana A.1ORCID,Kuchkina Nina V.1ORCID,Mikhailov Stepan P.2,Mikhalchenko Alexander V.1,Bykov Alexey V.2,Doluda Valentin Yu.2,Bronstein Lyudmila M.3ORCID,Shifrina Zinaida B.1

Affiliation:

1. A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia

2. Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia

3. Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA

Abstract

The growing demand for new energy sources governs the intensive research into CO2 hydrogenation to methanol, a valuable liquid fuel. Recently, indium-based catalysts have shown promise in this reaction, but they are plagued by shortcomings such as structural instability during the reaction and low selectivity. Here, we report a new strategy of controlling the selectivity and stability of bimetallic magnetically recoverable indium-based catalysts deposited onto a solid support. This was accomplished by the introduction of a structural promoter: a branched pyridylphenylene polymer (PPP). The selectivity of methanol formation for this catalyst reached 98.5%, while in the absence of PPP, the catalysts produced a large amount of methane, and the selectivity was about 70.2%. The methanol production rate was higher by a factor of twelve compared to that of a commercial Cu-based catalyst. Along with tuning selectivity, PPP allowed the catalyst to maintain a high stability, enhancing the CO2 sorption capacity and the protection of In against sintering and over-reduction. A careful evaluation of the structure–activity relationships allowed us to balance the catalyst composition with a high level of structural control, providing synergy between the support, magnetic constituent, catalytic species, and the stabilizing polymer layer. We also uncovered the role of each component in the ultimate methanol activity and selectivity.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3