Cytotoxicity of PEG-Coated Gold and Gold–Iron Alloy Nanoparticles: ROS or Ferroptosis?

Author:

de Faria Clara M. G.1,Bissoli Michael1,Vago Riccardo2ORCID,Spinelli Antonello E.3ORCID,Amendola Vincenzo1ORCID

Affiliation:

1. Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy

2. Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, I-20132 Milan, Italy

3. Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, I-20132 Milan, Italy

Abstract

Nanomedicine relies on the exploitation of nanoscale constructs for therapeutic and diagnostic functions. Gold and gold–iron alloy nanoparticles (NPs) are two examples of nanomaterials with favorable features for use in nanomedicine. While gold NPs have been studied extensively in the last decades, they are not biodegradable. Nonetheless, biodegradation was recently observed in gold alloys with iron obtained using laser ablation in liquid (LAL). Hence, there is a significant interest in the study of the biological effects of gold and gold–iron alloy nanoparticles, starting from their tolerability and cytotoxicity. In this study, these two classes of NPs, obtained via LAL and coated with biocompatible polymers such as polyethylene glycol, were investigated in terms of their cytotoxicity in fibroblasts, prostate cancer cells (PC3) and embryonic kidney cells (HEK). We also explored the effects of different synthetic procedures, stabilizing additives, and the possible mechanisms behind cell mortality such as the formation of reactive oxygen species (ROS) or ferroptosis. NPs larger than 200 nm were associated with lower cell tolerability. The most tolerable formulations were pure PEG-Au NPs, followed by PEG-Au–Fe NPs with a hydrodynamic size < 50 nm, which displayed a toxicity of only 20% in fibroblasts after 72 h of incubation. In addition, tumor cells and highly proliferating HEK cells are more sensitive to the NPs than fibroblasts. However, a protective effect of catalase was found for cells incubated with PEG-Au–Fe NPs, indicating an important role of hydrogen peroxide in alloy NP interactions with cells. These results are crucial for directing future synthetic efforts for the realization of biocompatible Au NPs and biodegradable and cytocompatible Au–Fe alloy NPs. Moreover, the correlation of the cytocompatibility of NPs with ROS and ferroptosis in cells is of general interest and applicability to other types of nanomaterials.

Funder

AIRC

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3