Tomographic Reconstruction: General Approach to Fast Back-Projection Algorithms

Author:

Polevoy Dmitry12ORCID,Gilmanov Marat23ORCID,Kazimirov Danil23ORCID,Chukalina Marina23ORCID,Ingacheva Anastasia23ORCID,Kulagin Petr234ORCID,Nikolaev Dmitry23ORCID

Affiliation:

1. Federal Research Center Computer Science and Control RAS, 119333 Moscow, Russia

2. Smart Engines Service LLC, 117312 Moscow, Russia

3. Institute for Information Transmission Problems RAS, 127051 Moscow, Russia

4. Phystech School of Applied Mathematics and Informatics, Moscow Institute of Physics and Technology (NRU), 141701 Dolgoprudny, Russia

Abstract

Addressing contemporary challenges in computed tomography (CT) demands precise and efficient reconstruction. This necessitates the optimization of CT methods, particularly by improving the algorithmic efficiency of the most computationally demanding operators—forward projection and backprojection. Every measurement setup requires a unique pair of these operators. While fast algorithms for calculating forward projection operators are adaptable across various setups, they fall short in three-dimensional scanning scenarios. Hence, fast algorithms are imperative for backprojection, an integral aspect of all established reconstruction methods. This paper introduces a general method for the calculation of backprojection operators in any measurement setup. It introduces a versatile method for transposing summation-based algorithms, which rely exclusively on addition operations. The proposed approach allows for the transformation of algorithms designed for forward projection calculation into those suitable for backprojection, with the latter maintaining asymptotic algorithmic complexity. Employing this method, fast algorithms for both forward projection and backprojection have been developed for the 2D few-view parallel-beam CT as well as for the 3D cone-beam CT. The theoretically substantiated complexity values for the proposed algorithms align with their experimentally derived estimates.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3