Design and Validation of a Low-Level Controller for Hierarchically Controlled Exoskeletons

Author:

Herron Connor W.ORCID,Fuge Zachary J.,Kogelis Madeline,Tremaroli Nicholas J.ORCID,Kalita BhabenORCID,Leonessa AlexanderORCID

Abstract

In this work, a generalized low-level controller is presented for sensor collection, motor input, and networking with a high-level controller. In hierarchically controlled exoskeletal systems, which utilize series elastic actuators (SEAs), the hardware for sensor collection and motor command is separated from the computationally expensive high-level controller algorithm. The low-level controller is a hardware device that must collect sensor feedback, condition and filter the measurements, send actuator inputs, and network with the high-level controller at a real-time rate. This research outlines the hardware of two printed circuit board (PCB) designs for collecting and conditioning sensor feedback from two SEA subsystems and an inertial measurement unit (IMU). The SEAs have a joint and motor encoder, motor current, and force sensor feedback that can be measured using the proposed generalized low-level controller presented in this work. In addition, the high and low-level networking approach is discussed in detail, with a full breakdown of the data storage within a communication frame during the run-time operation. The challenges of device synchronization and updates rates of high and low-level controllers are also discussed. Further, the low-level controller was validated using a pendulum test bed, complete with full sensor feedback, including IMU results for two open-loop scenarios. Moreover, this work can be extended to other hierarchically controlled robotic systems that utilize SEA subsystems, such as humanoid robots, assistive rehabilitation robots, training simulators, and robotic-assisted surgical devices. The hardware and software designs presented in this work are available open source to enable researchers with a direct solution for data acquisition and the control of low-level devices in a robotic system.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference57 articles.

1. (2022, November 25). World Report on Disability. Available online: https://www.who.int/news-room/fact-sheets/detail/assistive-technology.

2. (2022, November 25). Survey of Occupational Injuries, Available online: https://www.bls.gov/iif/nonfatal-injuries-and-illnesses-tables.htm#dafw.

3. Effects of two passive back-support exoskeletons on muscle activity, energy expenditure, and subjective assessments during repetitive lifting;Alemi;Hum. Factors,2020

4. Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review;Kalita;Int. J. Soc. Robot.,2021

5. Effects of long-term Tai-Chi Chuan practice on whole-body balance control during obstacle-crossing in the elderly;Kuo;Sci. Rep.,2022

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3