Moving Real-Target Imaging of a Beam-Broaden ISAL Based on Orthogonal Polarization Receiver and Along-Track Interferometry

Author:

Gao Jinghan12,Li Daojing1,Wu Jiang12,Cui Anjing12,Wu Shumei1

Affiliation:

1. National Key Laboratory of Microwave Imaging, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. The School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

In response to the application requirement of wide-range high-resolution imaging of non-cooperative moving real targets by inverse synthetic-aperture ladar (ISAL), experiments were conducted on the depolarization effect of target materials, and the polarization selection of ISAL receiving and transmitting channels was discussed. Considering the impact of target depolarization and the demand for along-track interferometry, combined with beam-broaden and high-gain amplifiers, an ISAL system design method that can stably image multiple non-cooperative real targets has been proposed. Under the condition of broadening the transmitting and receiving beams to 3° in the elevation direction for non-cooperative moving vehicles, echo data with a duration of 1 s is obtained. The spatial correlation algorithm combined with along-track interferometry is used to estimate the vibration phase error. The sub-aperture Range-Doppler algorithm is used for imaging. The ISAL imaging results of the moving vehicle validated the high-resolution imaging ability of ISAL and its potential for stable imaging of non-cooperative moving real targets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3