Spectral Dual-Layer Computed Tomography Can Predict the Invasiveness of Ground-Glass Nodules: A Diagnostic Model Combined with Thymidine Kinase-1

Author:

Wang Tong1ORCID,Yue Yong1,Fan Zheng2,Jia Zheng3,Yu Xiuze1,Liu Chen1,Hou Yang1

Affiliation:

1. Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

2. Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China

3. Philips (China) Investment Co., Ltd., Shanghai 200072, China

Abstract

Objectives: Few studies have explored the use of spectral dual-layer detector-based computed tomography (SDCT) parameters, thymidine kinase-1 (TK1), and tumor abnormal protein (TAP) for the detection of ground-glass nodules (GGNs). Therefore, we aimed to evaluate the quantitative and qualitative parameters generated from SDCT for predicting the pathological subtypes of GGN-featured lung adenocarcinoma combined with TK1 and TAP. Material and Methods: Between July 2021 and September 2022, 238 patients with GGNs were retrospectively enrolled in this study. SDCT and tests for TK1 and TAP were performed preoperatively, and the lesions were divided into glandular precursor lesions (PGL), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC), according to the pathological results. A receiver operating characteristic (ROC) curve was used to compare the diagnostic performance of these parameters. Multivariate logistic regression analysis was performed to construct a joint diagnostic model and create a nomogram. Results: This study included 238 GGNs, including 41 atypical adenomatous hyperplasias (AAH), 62 adenocarcinomas in situ (AIS), 49 MIA, and 86 IAC, with a high proportion of women, non-smokers, and pure ground-glass nodule (pGGN). CT100 keV (a/v), electronic density (EDW) (a/v), Daverage, Dsolid, TK1, and TAP of MIA and IAC were higher than those of PGL. The effective atomic number (Zeff (a/v)) was lower in MIA and IAC than in PGL (all p < 0.05). Logistic regression analysis showed that Zeff (a), EDW (a), TK1, Daverage, and internal bronchial morphology were crucial factors in predicting the aggressiveness of GGN. Zeff (a) had the highest diagnostic performance with an area under the ROC curve (AUC) = 0.896, followed by EDW (a) (AUC = 0.838) and CT100 keVa (AUC = 0.819). The diagnostic model and nomogram constructed using these five parameters (Zeff (a) + EDW (a) + CT100 keVa + Daverage + TK1) had an AUC = 0.933, which was higher than the individual parameters (p < 0.05). Conclusions: Multiple quantitative and functional parameters can be selected based on SDCT, especially Zeff (a) and EDW (a), which have high sensitivity and specificity for predicting GGNs’ invasiveness. Additionally, the combination of TK1 can further improve diagnostic performance, and using a nomogram is helpful for individualized predictions.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3