Investigating the Performance of Carbon Monoxide and Methane Observations from Sentinel-5 Precursor in China

Author:

Tian Yuan,Hong Xinhua,Shan Changgong,Sun Youwen,Wang Wei,Zhou MinqiangORCID,Wang Pucai,Lin Peize,Liu Cheng

Abstract

Since its launch on 13 October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor (S5P) mission has been measuring the solar radiation backscattered by Earth’s atmosphere and surface. In this study, we evaluate the TROPOMI operational methane (CH4) and carbon monoxide (CO) products’ performance results covering about 3 years using the only two global Total Carbon Column Observing Network (TCCON) sites in China, i.e., the Hefei site and the Xianghe site. These two sites have recently joined the TCCON, and this study uses the both sites simultaneously to validate the TROPOMI products over China for the first time. We found that the systematic bias with rescaling between the TROPOMI CO products and the Hefei site is on average 1.78 ± 6.35 ppb or 1.18 ± 5.35%. The systematic bias with rescaling between the TROPOMI CO products and the Xianghe site is on average 5.33 ± 14.24 ppb or 3.85 ± 10.30%. Both the stations show a correlation above 0.9. The TROPOMI CO data are systematically higher than the two TCCON sites measurements in China. We found that the systematic bias with rescaling between the TROPOMI CH4 products and the Hefei site is on average −4.13 ± 11.65 ppb or −0.22 ± 0.62%. The systematic bias between the TROPOMI CH4 products and Xianghe site is on average −7.25 ± 10.72 ppb or −0.39 ± 0.57%. Both the stations show a correlation above 0.9. The TROPOMI CH4 data are systematically lower than the two TCCON sites measurements in China. We found that the bias between the TROPOMI and the two sites’ data as a function of the coincident radius around the two sites is mostly affected by localized emissions for both CO and CH4. We also observe a CO decreasing trend and a CH4 increasing trend in the year-to-year relative changes from 2019 to 2021. Validating against reference from Hefei and Xianghe TCCON site demonstrates the high quality of TROPOMI CO and CH4 data over China.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Doctoral Scientific Research Foundation of Anhui University

Key Laboratory of Environmental Optics and Technology, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3