Interpretable Deep Learning Applied to Rip Current Detection and Localization

Author:

Rampal Neelesh,Shand Tom,Wooler Adam,Rautenbach ChristoORCID

Abstract

A rip current is a strong, localized current of water which moves along and away from the shore. Recent studies have suggested that drownings due to rip currents are still a major threat to beach safety. Identification of rip currents is important for lifeguards when making decisions on where to designate patrolled areas. The public also require information while deciding where to swim when lifeguards are not on patrol. In the present study we present an artificial intelligence (AI) algorithm that both identifies whether a rip current exists in images/video, and also localizes where that rip current occurs. While there have been some significant advances in AI for rip current detection and localization, there is a lack of research ensuring that an AI algorithm can generalize well to a diverse range of coastal environments and marine conditions. The present study made use of an interpretable AI method, gradient-weighted class-activation maps (Grad-CAM), which is a novel approach for amorphous rip current detection. The training data/images were diverse and encompass rip currents in a wide variety of environmental settings, ensuring model generalization. An open-access aerial catalogue of rip currents were used for model training. Here, the aerial imagery was also augmented by applying a wide variety of randomized image transformations (e.g., perspective, rotational transforms, and additive noise), which dramatically improves model performance through generalization. To account for diverse environmental settings, a synthetically generated training set, containing fog, shadows, and rain, was also added to the rip current images, thus increased the training dataset approximately 10-fold. Interpretable AI has dramatically improved the accuracy of unbounded rip current detection, which can correctly classify and localize rip currents about 89% of the time when validated on independent videos from surf-cameras at oblique angles. The novelty also lies in the ability to capture some shape characteristics of the amorphous rip current structure without the need of a predefined bounding box, therefore enabling the use of remote technology like drones. A comparison with well-established coastal image processing techniques is also presented via a short discussion and easy reference table. The strengths and weaknesses of both methods are highlighted and discussed.

Funder

National Institute of Water and Atmospheric Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Water-Puddle Segmentation Using Deep Learning in Unstructured Environments;2023 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI);2023-12-11

2. On the use of convolutional deep learning to predict shoreline change;Earth Surface Dynamics;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3