Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview

Author:

ElGamal Ramadan12,Song Cheng2,Rayan Ahmed M.3ORCID,Liu Chuanping2,Al-Rejaie Salim4,ElMasry Gamal1ORCID

Affiliation:

1. Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt

2. School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing 100083, China

3. Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt

4. Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia

Abstract

Over the last few decades, many researchers have investigated in detail the characteristics of bioactive compounds such as polyphenols, vitamins, flavonoids, and glycosides, and volatile compounds in fruits, vegetables and medicinal and aromatic plants that possess beneficial properties, as well as consumer acceptance and preference. The main aim of this article is to provide an updated overview of recent research endeavors related to the effects of the drying process on the major bioactive/effective compounds in agricultural products. Particular emphasis was placed on details related to the changes occurring in vitamin C, polyphenols, flavonoids, glycosides and volatile compounds, as well as the antioxidant activity. An analysis of the degradation mechanisms of these compounds showed that vitamin C, phenols, flavonoids and glycosides react with oxygen during the convective drying process under high drying temperatures, and the reaction rate results in degradation in such bioactive compounds due to high reducibility. On the other hand, high temperature results in a short drying time, thus minimizing the degradation of bioactive compounds. The reviewed research works addressing this trend revealed that the ideal drying temperatures for retaining vitamin C, polyphenols, flavonoids, glycosides, volatile compounds and their antioxidant activity were 50–60 °C, 55–60 °C, 60–70 °C, 45–50 °C, 40–50 °C and 50–70 °C, respectively. In conclusion, to maintain plant bioactive components, convective drying at relatively low drying temperatures is strongly recommended.

Funder

Science, Technology & Innovation Funding Authority (STIFA) of Egypt

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3