The Use of Agaricus subrufescens for Rehabilitation of Agricultural Soils

Author:

Hu YuweiORCID,Bandara Asanka R.,Xu JianchuORCID,Kakumyan PattanaORCID,Hyde Kevin D.,Mortimer Peter E.

Abstract

Globally, the quality of agricultural soils is in decline as a result of mismanagement and the overuse of agrichemicals, negatively impacting crop yields. Agaricus subrufescens Peck is widely cultivated as an edible and medicinal mushroom; however, its application in soil bioremediation and amendment remains insufficiently studied. In order to determine if A. subrufescens can positively impact agricultural soils, we designed two experiments: the first, a glasshouse experiment investigating the ways in which A. subrufescens production alters soil nutrients and soil health; the second, a laboratory experiment investigating if A. subrufescens can degrade beta-cypermethrin (β-CY) and glufosinate ammonium (Gla), two widely used agrichemicals. The glasshouse experiment results indicated that the use of compost and compost combined with A. subrufescens led to increases in soil organic matter, nitrogen, phosphorus, and potassium compared to the control treatments (sterilized soil). However, the incorporation of A. subrufescens with compost resulted in significantly greater levels of both available nitrogen and available phosphorus in the soils compared to all other treatments. Laboratory experiments determined that the mycelium of A. subrufescens were unable to grow at concentrations above 24.71 μg/mL and 63.15 μg/g for β-CY and Gla, respectively. Furthermore, results indicated that fungal mycelia were able to degrade 44.68% of β-CY within 15 days, whereas no significant changes were found in the concentration of Gla. This study highlights that cultivation of A. subrufescens may be a sustainable alternative for the rehabilitation of agricultural soils, whilst providing an additional source of income for farmers.

Funder

NSFC-CGIAR Project

Yunnan Provincial Science and Technology Department

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3