Effects of Water and Nitrogen Regulation on Cotton Growth and Hydraulic Lift under Dry Topsoil Conditions

Author:

Wang Zhiyu1,Zhang Kun2,Shao Guangcheng1,Lu Jia34,Gao Yang1

Affiliation:

1. College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China

2. Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, China

3. State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

4. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

Abstract

Dry topsoil and relatively moist subsoil can occur in specific areas and times, limiting plant growth but creating conditions for hydraulic lift (HL). There is a lack of a rational water and nitrogen (N) strategy to improve cotton growth and maintain HL. This study investigated the effects of three topsoil water conditions (W0.6: 60–70%, W0.5: 50–60%, and W0.4: 40–50% of field capacity) and three N rates (N120-120, N240-240, and N360-360 kg N ha−1) plus one control treatment on cotton growth and HL under dry topsoil conditions in 2020 and 2021. The results showed that plant height and leaf area increased with increasing N rate, but the differences among topsoil water conditions were relatively small, except for leaf area in 2021. The HL water amount of all treatments increased gradually and then continued to decline during the observation period. There was a trend that the drier the topsoil or the more N applied, the greater the amount of HL water. Additionally, topsoil water conditions and N rate significantly affected the total HL water amount and root morphological characteristics (root length, surface area, and volume). Seed and lint cotton yield tended to decrease with increasing topsoil dryness at N240 or N360, except for lint yield in 2021, or with decreasing N rate, especially under W0.6. As topsoil became drier, the total evapotranspiration (ET) decreased, while with the increase in N rate, ET showed small differences. Water use efficiency increased with a higher N rate, while N partial factor productivity (PFPN) did the opposite. Furthermore, the PFPN under W0.4 was significantly lower than that under W0.6 at N240 or N120. These findings could be useful for promoting the utilization of deep water and achieving sustainable agricultural development.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3