An Improved Rotating Box Detection Model for Litchi Detection in Natural Dense Orchards

Author:

Li Bin1,Lu Huazhong1,Wei Xinyu1,Guan Shixuan2,Zhang Zhenyu2,Zhou Xingxing1,Luo Yizhi1ORCID

Affiliation:

1. Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

2. College of Engineering, South China Agricultural University, Guangzhou 510642, China

Abstract

Accurate litchi identification is of great significance for orchard yield estimations. Litchi in natural scenes have large differences in scale and are occluded by leaves, reducing the accuracy of litchi detection models. Adopting traditional horizontal bounding boxes will introduce a large amount of background and overlap with adjacent frames, resulting in a reduced litchi detection accuracy. Therefore, this study innovatively introduces the use of the rotation detection box model to explore its capabilities in scenarios with occlusion and small targets. First, a dataset on litchi rotation detection in natural scenes is constructed. Secondly, three improvement modules based on YOLOv8n are proposed: a transformer module is introduced after the C2f module of the eighth layer of the backbone network, an ECA attention module is added to the neck network to improve the feature extraction of the backbone network, and a 160 × 160 scale detection head is introduced to enhance small target detection. The test results show that, compared to the traditional YOLOv8n model, the proposed model improves the precision rate, the recall rate, and the mAP by 11.7%, 5.4%, and 7.3%, respectively. In addition, four state-of-the-art mainstream detection backbone networks, namely, MobileNetv3-small, MobileNetv3-large, ShuffleNetv2, and GhostNet, are studied for comparison with the performance of the proposed model. The model proposed in this article exhibits a better performance on the litchi dataset, with the precision, recall, and mAP reaching 84.6%, 68.6%, and 79.4%, respectively. This research can provide a reference for litchi yield estimations in complex orchard environments.

Funder

Guangdong Province Rural Revitalization Strategic

The Youth Tutorial Program of Guangdong Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3