De Novo Transcriptome Analysis of Solanum lycopersicum cv. Super Strain B under Drought Stress

Author:

Al-Zahrani Hassan S.1,Moussa Tarek A. A.12,Alsamadany Hameed1ORCID,Hafez Rehab M.2ORCID,Fuller Michael P.3ORCID

Affiliation:

1. Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt

3. School of Biological and Marine Science, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK

Abstract

Tomato cv. super strain B was widely cultivated in Saudi Arabia under drought stress. Illumina Hiseq-2000 was used to create the transcriptional profile of tomato cultivar super strain B. A total of 98,069 contigs were gathered, with an average length of 766 bp. Most of the genes in the gene ontology (GO) analysis were categorized into molecular function (MF) of ATP binding (1301 genes), metal ion binding (456 genes), protein kinase activity (392 genes), transferase activity (299 genes), Biological process (BP) of DNA-templated genes (366 genes), and regulation of transcription genes (209 genes), while cellular components (CC) of integral component of membrane (436 genes). The most dominant enzymes expressed were transferases (645 sequences). According to the KEGG pathway database, 15,638 transcripts were interpreted in 125 exclusive pathways. The major pathway groups were metabolic pathways (map01100, 315 genes) and biosynthesis of secondary metabolites (map01110, 188 genes). The total number of variants in the twelve chromosomes of super strain B compared with the tomato genome was 5284. The total number of potential SSRs was 5047 in 4806 unigenes. Trinucleotide repeats (3006, 59.5%) were the most found type in the transcriptome. A total of 4541 SNPs and 744 INDELs in tomato super strain B were identified when compared with the tomato genome.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3