Influence of Water Management Farming Practices on Soil Organic Carbon and Nutrients: A Case Study of Rice Farming in Kilombero Valley, Tanzania

Author:

Alavaisha EdmondORCID,Tumbo MadakaORCID,Senyangwa Jacqueline,Mourice Sixbert

Abstract

Water scarcity and nutrient availability for rice farming have become great matters of concern in the contexts of climate change and land use change globally. Both interact and contribute to crop productivity at the expense of nutrients and future water sustainability. The objective of this study was to understand the on-farm potential response of soil organic carbon (SOC), total nitrogen (TN), and total phosphorous (TP) to water management practices in rice farming within the Kilombero Valley, Tanzania. Soil samples were collected from three villages in the study area at four depths: 0–20, 20–30, 30–40, and 40–50 cm. Four water management regimes, namely: A = traditional flooding (rainfed) without intensification of rice farming; B = traditional flooding (rainfed) involving a system of rice intensification (SRI); C = alternative wetting and drying (AWD) involving SRI for one cropping season; D = abandoned fields (fallow); and E = AWD involving SRI for two cropping seasons, were investigated as regards their impact on SOC, TN, and TP. There were significant (p < 0.05) effects of water management regimes on SOC, TN, and TP. AWD involving SRI for one cropping season indicated a positive effect on SOC and TN across all depths as compared to other practices. We conclude that water management practice that involves AWD with SRI for one cropping season is a plausible approach to maintaining high SOC and TN, with the potential for increasing crop production while minimizing water consumption.

Funder

African academy of Science

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference54 articles.

1. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)–Managing Systems at Risk,2011

2. Rice Production Worldwide;Chauhan,2017

3. Water Management in Irrigated Rice: Coping with Water Scarcity;Bouman,2007

4. Rice Almanac;Maclean,2003

5. Irrigation and fertilization management to optimize rice yield, water productivity and nitrogen recovery efficiency

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3