Research on Lightweight Rice False Smut Disease Identification Method Based on Improved YOLOv8n Model

Author:

Yang Lulu1,Guo Fuxu1,Zhang Hongze1,Cao Yingli12,Feng Shuai12

Affiliation:

1. College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China

2. Liaoning Key Laboratory of Intelligent Agricultural Technology, Shenyang 110866, China

Abstract

In order to detect rice false smut quickly and accurately, a lightweight false smut detection model, YOLOv8n-MBS, was proposed in this study. The model introduces the C2f_MSEC module to replace C2f in the backbone network for better extraction of key features of false smut, enhances the feature fusion capability of the neck network for different sizes of false smut by using a weighted bidirectional feature pyramid network, and designs a group-normalized shared convolution lightweight detection head to reduce the number of parameters in the model head to achieve model lightweight. The experimental results show that YOLOv8n-MBS has an average accuracy of 93.9%, a parameter count of 1.4 M, and a model size of 3.3 MB. Compared with the SSD model, the average accuracy of the model in this study increased by 4%, the number of parameters decreased by 89.8%, and the model size decreased by 86.9%; compared with the YOLO series of YOLOv7-tiny, YOLOv5n, YOLOv5s, and YOLOv8n models, the YOLOv8n-MBS model showed outstanding performance in terms of model accuracy and model performance detection; compared to the latest YOLOv9t and YOLOv10n models, the average model accuracy increased by 2.8% and 2.2%, the number of model parameters decreased by 30% and 39.1%, and the model size decreased by 29.8% and 43.1%, respectively. This method enables more accurate and lighter-weight detection of false smut, which provides the basis for intelligent management of rice blast disease in the field and thus promotes food security.

Funder

National Rice Industry Technology System

Doctoral Research Fund of Shenyang Agricultural University

Publisher

MDPI AG

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3