Identification of the Genome-Wide Expression Patterns of Non-Coding RNAs Associated with Tanshinones Synthesis Pathway in Salvia miltiorrhiza

Author:

Lin Caicai12,Zhou Changhao1,Liu Zhongqian1,Li Xingfeng13,Song Zhenqiao1

Affiliation:

1. Agronomy College, Shandong Agricultural University, Tai’an 271018, China

2. Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China

3. State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China

Abstract

The red root of Salvia miltiorrhiza Bunge, a famous traditional Chinese medicine (TCM), was caused by tanshinone in epidermis cells. In order to study the biological function of ncRNAs in the tanshinone synthesis, the expression patterns of mRNA and ncRNAs were comprehensively analyzed in red (high tanshinone content) and white root (low tanshinone content) tissues derived from the same plant. A total of 731 differentially expressed genes (DEGs) were mainly enriched in primary metabolic pathways such as galactose and nitrogen, and some secondary metabolic pathways such as phenylpropanoid and terpenoids. A total of 70 miRNAs, 48 lncRNAs, and 26 circRNAs were identified as differentially expressed (DE) ones. The enrichment pathway of the targets of DE-lncRNA were mainly in ribosome, carbon metabolism, plant hormone signal transduction, and glycerophospholipid metabolism. The function of the targets genes of 59 miRNAs combined with DE-circRNAs was mainly involved in plant–pathogen interaction, endocytosis, phenylpropanoid biosynthesis, and sesquiterpenoid and triterpenoid biosynthesis pathways. Most genes of the tanshinone synthesis pathway had a higher expression. Some ncRNAs were predicted to regulate several key enzyme genes of the tanshinone synthesis pathway, such as SmDXS2, SmGGPPS1, SmKSL. Furthermore, most target genes were related to the resistance of pathogens. The present study exhibited the tissue-specific expression patterns of ncRNAs, which would provide a basis for further research into the regulation mechanism of ncRNAs in the tanshinone synthesis process.

Funder

Agricultural Variety Project of Shandong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3