Effects of Soil Types and Irrigation Modes on Rice Root Morphophysiological Traits and Grain Quality

Author:

Zhao Can,Chen Mengyun,Li Xiaofeng,Dai Qigen,Xu Ke,Guo Baowei,Hu Yajie,Wang Weiling,Huo Zhongyang

Abstract

Soil moisture plays an important role in rice (Oryza sativa L.) root development and grain quality. However, little is known about the effects of soil type on rice root morphophysiological traits (RMTs) and grain quality under different irrigation modes. A soil-grown experiment was conducted during the 2016–2017 rice growing seasons in Yangzhou city with three soil types, namely, clay soil, loamy soil, and sandy soil, and three irrigation regimes, namely, conventional irrigation (CI, 0 kPa), alternate wetting and moderate drying (AWMD, −15 kPa), and alternate wetting and severe drying (AWSD, −25 kPa). The AWMD regime improved the RMT by 3.05–48.95% when compared with the CI and AWSD regimes, and the RMTs in loamy were 7.38–93.67% higher than those in clay and sandy soil under AWMD across 2016 and 2017. The AWMD regime improved the rice milling quality and appearance quality both in clay and loamy soil by 2.88–10.08% and 15.43–45.77%, respectively. The CI regime improved the processing quality and nutritional quality of rice in sandy soil. Both loamy and clay soils improved the rice RMTs and grain quality under an AWMD regime. The RMTs were very significantly correlated with water use efficiency, rice milling, and cooking quality and were negatively correlated with rice appearance quality. The AWMD regime can affect the rice RMT and can improve the rice grain quality in loamy soil. Our results provide a theoretical basis for the design of water-saving rice irrigation regimes and for an improvement in rice grain quality in the process of rice cultivation.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference56 articles.

1. Yield Physiology of Rice

2. Food and Agriculture Organization (FAO) of the United Nations, Romehttp://www.fao.org

3. Rice research in China in the early 21st century;Cai;Chin. Rice Res. Newsl.,2000

4. Water saving irrigation in China

5. Water Conservation and Nitrogen Loading Reduction Effects with Controlled and Mid-Gathering Irrigation in a Paddy Field

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3