Copper and Cadmium Accumulation and Phytorextraction Potential of Native and Cultivated Plants Growing around a Copper Smelter

Author:

Dou Changming1,Cui Hongbiao2,Zhang Wei2,Yu Wenli2,Sheng Xue2,Zheng Xuebo3

Affiliation:

1. Anhui Provincial Academy of Eco-Environmental Science Research, Hefei 230061, China

2. School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China

3. Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China

Abstract

Phytoextraction is a promising technology for remediating heavy metal-contaminated soil. Continuously screening potential plants is important for enhancing the efficiency of remediation. In this study, fourteen local native plant species and four cultivated plant species, along with their paired soils, were collected from around a copper smelter. The characteristics of soil pollution were evaluated using contaminant factors (CF) and a geoaccumulation index (Igeo). The phytoextraction potential of plants was investigated using the translocation factor (TF) and bioconcentration factor (BCF). The soils around the smelter were very acidic, with a mean pH of 5.01. The CF for copper and cadmium were 8.67–32.3 and 5.45–44.2, and the Igeo values for copper and cadmium were 2.43–4.43 and −0.12–2.29, respectively, indicating that the level of soil contamination was moderate to severe. The copper concentrations in the root (357 mg/kg), shoot (219 mg/kg), and leaf (269 mg/kg) of Elsholtzia splendens Nakai were higher than that in the other species. The cadmium in the shoot (32.2 mg/kg) and leaf (18.5 mg/kg) of Sedum plumbizincicola was the highest, and Phytolacca acinosa Roxb. had the highest cadmium level (20 mg/kg) in the root. Soil total and CaCl2-extractable copper and cadmium were positively correlated with copper and cadmium in the plant roots, respectively. The results of TF and BCF for copper and cadmium suggested that the accumulation and translocation capacities for cadmium were higher than those of copper in the eighteen plant species. Although not all plants met the criteria of being hyperaccumulators, Sedum plumbizincicola, Mosla chinensis Maxim, and Elsholtzia splendens Nakai showed the most potential as candidates for the phytoextraction of copper and cadmium contaminated soils, as indicated by their TF and BCF values.

Funder

Anhui Province Natural Science Foundation

Natural Science Foundation of Universities of Anhui Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3