Soil Organic Matter Input Promotes Coastal Topsoil Desalinization by Altering the Salt Distribution in the Soil Profile

Author:

Li Jingsong12,Li Weiliu23,Feng Xiaohui23,Liu Xiaojing23,Guo Kai23,Fan Fengcui1,Liu Shengyao1,Jia Songnan1

Affiliation:

1. The Institute of Agricultural Information and Economics (IAIE), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China

2. Key Laboratory of Agricultural Water Resources, CAS Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Organic amendment is an effective method to reclaim salt-affected soil. However, in coastal land with shallow saline groundwater, it is limited known about the mechanism of organic amendment on soil desalinization. Thus, to examine the effect of topsoil organic matter content on soil water/salt transport and distribution, two-year field observations in Bohai coastal land, North China, and soil column experiments simulating salt accumulation and salt leaching were conducted, respectively. There were different organic fertilizer amendment rates in 0–20 cm topsoil, 0% (CK), 50% (OA 0.5), and 100% (OA 1.0) (w/w) for soil column experiments. Field observation showed that after organic amendment (OA), the soil’s physical structure was improved, and less of the increase in topsoil salt content was observed, with more salt accumulated in deep soil layers during the dry season. In addition, OA greatly promoted salt leaching during the rainy seasons. The results of the soil column tests further indicated that OA treatments significantly inhibited soil evaporation, with less salt accumulated in the topsoil. Although there was no difference in soil water distribution between the CK and OA 0.5 treatment, the topsoil EC for the OA 0.5 treatment was significantly lower than that for CK. During soil water infiltration, the OA 0.5 and OA 1.0 treatments significantly increased the infiltration rates, enhanced the wetting front, and promoted salt leaching to deeper soil layers, compared with CK. The improvement of soil organic amounts could make the soil more self-resistant to the coastal salinization. The findings of this study provide some insights into soil water/salt regulation in heterogeneous soil masses and on the permanent management of coastal saline farmland.

Funder

The National Key Research and Development Program of China

the CAS Engineering Laboratory for Efficient Utilization of Saline Alkali Land Resources, Chinese Academy of Sciences

the Talents construction project of science and technology innovation, Hebei Academy of Agriculture and Forestry Sciences

Modern agricultural industry technology system, Department of Agriculture and Rural Affairs of Hebei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3