Effect of Root-Knot Nematode Disease on Bacterial Community Structure and Diversity in Peanut Fields

Author:

Wu Lijun1,Ren Yan1,Zhang Xiangsong2,Chen Guanghui1,Wang Chuantang1ORCID,Wu Qi1,Li Shuangling1,Zhan Fudong1,Sheng Li3,Wei Wenliang4,Yuan Mei1ORCID

Affiliation:

1. Key Laboratory of Peanut Biology, Genitics and Breeding/Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute/Shandong Academy of Agricultural Sciences, Qingdao 266100, China

2. Linyi Agricultural Technology Extension Center, Linyi 276001, China

3. Qingdao Academy of Agricultural Sciences, Qingdao 266100, China

4. College of Agriculture, Yangtze University, Jingzhou 434000, China

Abstract

The root-knot nematode (RKN) disease is a highly destructive soilborne disease that significantly affects peanut yield in Northern China. The composition of the soil microbiome plays a crucial role in plant disease resistance, particularly for soilborne diseases like RKN. However, the relationship between the occurrence of RKN disease and the structure and diversity of bacterial communities in peanut fields remains unclear. To investigate bacterial diversity and the community structure of peanut fields with severe RKN disease, we applied 16S full-length amplicon sequencing based on the third high-throughput sequencing technology. The results indicated no significant differences in soil bacterial α-diversity between resistant and susceptible plants at the same site. However, the Simpson index of resistant plants was higher at the site of peanut-wheat-maize rotation (Ro) than that at the site of peanut continuous cropping (Mo), showing an increase of 21.92%. The dominant phyla identified in the peanut bulk soil included Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, Chloroflexi, Firmicutes, and Bacteroidetes. Further analysis using LEfSe (Linear discriminant analysis effect size) revealed that Sulfuricellaceae at the family level was a biomarker in the bulk soil of susceptible peanut compared to resistant peanut. Additionally, Singulisphaera at the genus level was significantly more enriched in the bulk soil of resistant peanut than that of susceptible peanut. Soil properties were found to contribute to the abundance of bacterial operational taxonomic units (OTUs). Available phosphorus (AP), available nitrogen (AN), organic matter (OM), and pH made a positive contribution to the bacterial OTUs, while available potassium (AK) made a negative contribution. The metabolic pathway of novobiocin biosynthesis was only enriched in soil samples from resistant peanut plants. Eleven candidate beneficial bacteria and ten candidate harmful strains were identified in resistant and susceptible peanut, respectively. The identification of these beneficial bacteria provides a resource for potential biocontrol agents that can help improve peanut resistance to RKN disease. Overall, the study demonstrated that severe RKN disease could reduce the abundance and diversity of bacterial communities in peanut bulk soil. The identification of beneficial bacteria associated with resistant peanut offered the possibility for developing biocontrol strategies to enhance peanut resistance to RKN disease.

Funder

by the Natural Science Foundation of Shangdong Province, China

the National Natural Science Foundation of China

the Key Research and Development Project of Shandong Province

Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences

the Qingdao People’s Livelihood Science and Technology Program, China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3