Enhancing Soil Aggregate Stability and Organic Carbon in Northwestern China through Straw, Biochar, and Nitrogen Supplementation

Author:

Wu Jun12ORCID,Teng Binqing12,Zhong Yuan2ORCID,Duan Xuejiao12,Gong Lijuan12,Guo Wanli1,Qi Peng12,Haider Fasih Ullah12ORCID,Cai Liqun12

Affiliation:

1. College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China

2. State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Enhancing soil stability through the incorporation of straw and biochar is well documented. Nevertheless, the combined impact of straw, biochar, and nitrogen supplementation on soil aggregates and organic carbon still needs to be explored, with limited attention given to various sieving methods in the existing literature. Therefore, the current experiment used four sieving methods—routine wet sieving (RoutW), fast-wetting sieving (FastW), slow-wetting sieving (SlowW), and wetting–stirring sieving (WetS)—to investigate the effects of adding straw (0 or 4.5 t ha−1), biochar (from maize straw, 0 or 15 t ha−1), and N (0 or 100 kg ha−1) on soil aggregate stability and soil organic C in silt–loam soil of rainfed farmland in northwest China. The field experiment was started in 2014; soil samples were collected in 2021. The results revealed that straw returned, biochar, and N addition significantly increased soil mean weight diameter (MWD) and soil organic C (SOC). Compared to CN0 (zero-amendment) plots, straw returned with nitrogen addition (SN100) significantly increased the MWD of aggregates by 130.3% (RoutW), 121.66% (FastW), 73.94% (SlowW), and 91.78% (WetS) in the 0–30 cm soil layer. The addition of biochar and nitrogen (BN100) treatment showed the most significant effects on the relative slaking index (RSI), relative mechanical breakdown index (RMI), and SOC; compared with CN0 treatment, BN100 plots can reduce RSI and RMI by 42.90% and 54.66% and increase SOC by 53.27% for all soil layers. Therefore, adding organic materials with N can enhance the stability of soil aggregates and SOC of silt–loam soils in northwest China. Integrating biochar as an organic soil amendment in the agricultural practices of northwest China presents a multifaceted solution that addresses soil health, crop productivity, and environmental sustainability. The current study provides valuable insights that support adopting this innovative approach, paving the way for future sustainable agricultural practices that can benefit both the region and the global community.

Funder

Gansu Agricultural University Public Recruitment Doctoral Research Start-up Fund

Natural Science Foundation of Gansu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3