Biochar and Nitrification Inhibitor (Dicyandiamide) Combination Had a Double-Win Effect on Saline-Alkali Soil Improvement and Soybean Production in the Yellow River Delta, China

Author:

Yu Chunxiao,Wang Guangmei,Zhang Haibo,Chen Hongpeng,Ma Qian

Abstract

Salt stress and nutrient deficiency strongly limited the productivity of coastal saline-alkali land in the Yellow River Delta. Biochar has been widely used to improve soil health and promote crop yield, and the positive effects of nitrification inhibitors on fertilizer use efficiency, especially nitrogen, were also verified. However, there were few types of research on the combined application of biochar and nitrification inhibitor dicyandiamide (DCD) on saline-alkali soil of the Yellow River Delta, China. In this study, five treatments, including no nitrogen (CK), normal NPK (N), NPK + 1%biochar (B), NPK + 2%DCD (D), and NPK + 1%biochar + 2%DCD (BD) were set to investigate the single and combined effect of biochar and DCD on nitrogen transform, soil properties, bacterial community structure, and soybean production. Results showed that BD application inhibited nitrification and increased the soil’s nitrate supply at the flowering stage, which reduced nitrogen waste and met the nitrogen demand for soybean growth. Biochar addition increased the soil’s pH and decreased the soil’s electrical conductivities and accelerated the soil’s macroaggregates formation, with the soil’s average mass diameter and geometric average diameter increasing by 78.69% and 30% in B, and 71.29% and 29.34% in BD relative to CK. Positive effects of inhibitors on soybean production were found in increasing soybean yield, hundred-grain weight, aboveground biomass, etc. Proteobacteria was the dominant phylum in the bacterial communities detected, and bacterial community diversity was significantly explained by nitrate content and soil aggregates (p < 0.05). Soil pH and DCD addition mainly influenced the abundance of the bacterial community, especially Actinobacteria. Biochar with DCD could be a feasible fertilization scheme for the coastal saline-alkali land in the Yellow River Delta, China.

Funder

National Key Research & Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3