Lentil Landrace Seed Origin and Genotype Affects Rhizosphere Microbiome

Author:

Gleridou Anthoula1ORCID,Giannopoulos Georgios1ORCID,Polidoros Alexios N.1ORCID,Mylona Photini V.2ORCID

Affiliation:

1. Laboratory of Genetics and Plant Breeding, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2. Institute of Plant Breeding & Genetic Resources, Hellenic Agricultural Organization-DEMETER, 57001 Thermi, Greece

Abstract

Lentil (Lens culinaris Medik.) is an essential legume crop providing healthy and nutritious food for people in low- to middle-income countries, worldwide. Lentil roots support symbiotic interactions with soil rhizobia species fostering nitrogen fixation; however, assemblage and diversity of the complete microbial rhizosphere community and the effect of seed genotype and origin remain largely unexplored. In this study we examined, via metagenomic analysis, the effects of seed origin on the rhizosphere’s communities in samples of the famous Greek lentil landrace, Eglouvis, derived from different local farmers and farming systems (including a Gene Bank sample), in comparison to a commercial variety. The landrace exhibited higher rhizosphere microbiome diversity compared to the commercial variety for all indexes. A core microbiome comprised of 158 taxa was present in all samples, while a greater number of unique bacterial taxa was recorded in the landrace samples compared to the commercial cultivar. Notably, landrace samples originated from organic farming had more than double the number of unique taxa compared to conventional counterparts. The study revealed a higher diversity of N2 fixers and archaea, Crenarchaeota and Thaumarchaeota, in landrace samples and particularly in those derived from organic farming, underpinning the distinct recruiting efficiency of beneficial soil microbes by the landrace.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3