Affiliation:
1. Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
2. Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
Abstract
Alternative fertilizers are essential to minimizing the deteriorating effects of chemical fertilizers on soil and water quality/health. Accordingly, the present work investigated the effects of combined organic–inorganic fertilization (COIF) on wheat and rice yields, soil nutrients, and soil Cd accumulation. Hence, seven different treatments were set up: control (CK); conventional fertilization (CF); adequate fertilization (OF); organic fertilizer replacing 25% (T1) and 50% (T2) of OF; and organic nitrogen (N) replacing 25% (M1) and 50% (M2) of OF-N. Overall, significant increases occurred in the yields of COIF crops. Compared with the CF, the highest wheat and rice yields happened in the M1 treatment (with a difference of approximately 18.5%) (p < 0.05). COIF slightly alleviated soil acidification, and improved the cation exchange capacity (CEC) of the study soils. Furthermore, COIF treatments significantly increased the contents of total phosphorus, total potassium, available phosphorus, and available potassium by 6.35 to 16.9%, 3.17 to 10.9%, 5.53 to 28.7%, and 2.6 to 12%, respectively (p < 0.05). Nevertheless, negligible increases took place in the Cd content of COIF soils compared with that of the CK. Altogether, our results concluded that 25% replacement of OF-N by organic N (M1) effectively improved the fertility/ecological sustainability of the study soils.
Funder
National “13th Five Year Plan” Water Pollution Control and Treatment Science and Technology Major Project
Ministry of Agriculture Green Planting and Breeding Recycling Pilot Project