Estimation of Fv/Fm in Spring Wheat Using UAV-Based Multispectral and RGB Imagery with Multiple Machine Learning Methods

Author:

Wu Qiang1,Zhang Yongping1,Xie Min1,Zhao Zhiwei1,Yang Lei2,Liu Jie3,Hou Dingyi4

Affiliation:

1. College of Agronomy, Inner Mongolia Agricultural University, Huhhot 010019, China

2. Bayannaoer Academy of Agricultural and Animal Sciences, Bayannaoer 015000, China

3. School of Biological Science and Technology, Baotou Teachers’ College, Baotou 014031, China

4. Chifeng Forest and Grassland Protection and Development Center, Chifeng 024005, China

Abstract

The maximum quantum efficiency of photosystem II (Fv/Fm) is a widely used indicator of photosynthetic health in plants. Remote sensing of Fv/Fm using MS (multispectral) and RGB imagery has the potential to enable high-throughput screening of plant health in agricultural and ecological applications. This study aimed to estimate Fv/Fm in spring wheat at an experimental base in Hanghou County, Inner Mongolia, from 2020 to 2021. RGB and MS images were obtained at the wheat flowering stage using a Da-Jiang Phantom 4 multispectral drone. A total of 51 vegetation indices were constructed, and the measured Fv/Fm of wheat on the ground was obtained simultaneously using a Handy PEA plant efficiency analyzer. The performance of 26 machine learning algorithms for estimating Fv/Fm using RGB and multispectral imagery was compared. The findings revealed that a majority of the multispectral vegetation indices and approximately half of the RGB vegetation indices demonstrated a strong correlation with Fv/Fm, as evidenced by an absolute correlation coefficient greater than 0.75. The Gradient Boosting Regressor (GBR) was the optimal estimation model for RGB, with the important features being RGBVI and ExR. The Huber model was the optimal estimation model for MS, with the important feature being MSAVI2. The Automatic Relevance Determination (ARD) was the optimal estimation model for the combination (RGB + MS), with the important features being SIPI, ExR, and VEG. The highest accuracy was achieved using the ARD model for estimating Fv/Fm with RGB + MS vegetation indices on the test sets (Test set MAE = 0.019, MSE = 0.001, RMSE = 0.024, R2 = 0.925, RMSLE = 0.014, MAPE = 0.026). The combined analysis suggests that extracting vegetation indices (SIPI, ExR, and VEG) from RGB and MS remote images by UAV as input variables of the model and using the ARD model can significantly improve the accuracy of Fv/Fm estimation at flowering stage. This approach provides new technical support for rapid and accurate monitoring of Fv/Fm in spring wheat in the Hetao Irrigation District.

Funder

Inner Mongolia “science and technology” action focus on special “Yellow River Basin durum wheat industrialization capacity enhancement”

Inner Mongolia “science and technology” action focus on special “Research and Application of Key Technologies for Production and Processing of Durum Wheat and Products in Hetao irrigation area”

Inner Mongolia Natural Science Foundation of China “Research on nitrogen nutrition diagnosis of spring wheat in Hetao irrigation area based on UAV mapping technology”

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3