Optimizing Water and Nitrogen Strategies to Improve Forage Oat Yield and Quality on the Tibetan Plateau Using APSIM

Author:

Ma Qianhu,Zhang Xuemei,Wu Yuhuan,Yang HuiminORCID,Wang Zikui

Abstract

There is a great need for improving oat forage production to increase forage supply and protect grassland ecosystems on the Tibetan Plateau. We conducted two field experiments and modeling work to investigate the responses of oat (Avena sativa L.) forage yield and N uptake to water and N applications, and to optimize the water and N scheduling under rainfed and irrigated conditions. The experiments were conducted in 2017 and 2018 at Jintai farm in the northeast of the Tibetan Plateau. Two N-applying rates of 120 and 60 kg ha−1 were tested in 2017, and four irrigation treatments (no irrigation—NI, irrigated 50 mm at flowering—I1, irrigated 50 mm at tillering and jointing—I2, and irrigated 50 mm at tillering, jointing, and flowering—I3) were applied under every N rate in 2018. The Agricultural Production System Simulator (APSIM) was calibrated and validated for the local oat variety. Under rainfed conditions in both years, oat yields under high and low N were 7.98–8.52 and 5.09–6.53 t ha−1, respectively; the high N rate significantly increased forage yield and N uptake compared to low N conditions by 22.2–67.4% (p < 0.01) and 42.0–162.0% (p < 0.01), respectively. In 2018, irrigation increased oat forage yield by 29.8–96.6% (p < 0.01) and increased N uptake by 19.6–50.5% (p > 0.05); N rates had no significant effect on forage yield (p > 0.05), but significantly increased N uptake by 42.6–64.7% (p < 0.01). I2 was superior to I3 in terms of increasing water use efficiency (WUE) while maintaining high forage yield and N uptake. APSIM-oat was calibrated with data under both rainfed and irrigated conditions and was confirmed to have good accuracy and lower normalized root mean square errors (NRMSEs) for phonology dates, forage yield, soil water storage, and N uptake. Scenario analysis was performed with 30-year historical weather data; five N rates were designed for rainfed conditions, and 25 scenarios comprising five N rates and five irrigation levels were designed for irrigated conditions. Simulations showed that the N rate of 90 kg ha−1 resulted in the best performance for oat under rainfed conditions. Under irrigated conditions, irrigation promoted oat nitrogen uptake. Thus, overall an N rate of 120 kg ha−1 in combination with irrigation of 120 mm applied during the vegetative growth period performed the best. This optimized strategy may provide guidance on water and N management of oat forage production in the Tibetan Plateau and similar alpine regions worldwide. The promoted strategy increases yields while reducing water and nitrogen resource wastes, thus decreasing the environmental pollution from agriculture and responding to the sustainable development of farmland ecosystems.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3