Optimizing the Incorporated Amount of Chinese Milk Vetch (Astragalus sinicus L.) to Improve Rice Productivity without Increasing CH4 and N2O Emissions

Author:

Zhou Nannan1,Jiang Tengfei1,Wang Jiajia2,Chen Yujiao1,Yang Wenbin1,Tang Shan2,Han Shang2,Wang Ying123

Affiliation:

1. Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China

2. Anhui Provincial Key Laboratory of Nutrient Recycling, Resources and Environment, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230031, China

3. Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241002, China

Abstract

Chinese milk vetch (CMV) is a leguminous green manure that is commonly cultivated in paddy fields and can partially substitute synthetic nitrogen fertilizer. However, the impacts of incorporating CMV on CH4 and N2O emissions are still a subject of controversy. Therefore, we conducted a field experiment over three years to investigate emissions under different substitution ratios: urea only (CF); incorporating a traditional amount of CMV (MV); and with incorporation ratios of 1/3 (MV1/3), 2/3 (MV2/3), and 4/3 (MV4/3) of MV for partial urea substitution. Compared with CF, MV2/3, MV, and MV 4/3 resulted in increased yields. MV and MV4/3 reduced N2O emissions but increased CH4 emissions by 28.61% and 85.60% (2019), 32.38% and 103.19% (2020), and 28.86% and 102.98% (2021), respectively, resulting in an overall increase in total global warming potential (except for MV in 2021). MV2/3 exhibited a low greenhouse gas intensity value ranging from 0.46 to 0.47. Partial least-squares-path model results showed that CH4 and N2O emissions were influenced by substitution ratios, which indirectly regulated the gene abundances of mcrA and nosZ. Overall, the impact of CMV on CH4 and N2O emissions was determined by substitution ratios. MV2/3, which involved partial substitution of synthetic N fertilizer with 15.0 t ha−1 of CMV, resulted in improved rice productivity without increasing CH4 and N2O emissions, making it a recommended approach in the study area.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Anhui Province

University Synergy Innovation Program of Anhui Province

Foundation of Anhui Laboratory of Molecule-Based Materials

Anhui Provincial Key Laboratory of Nutrient Recycling

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3