Transcriptome Analysis Reveals Association of Photosynthesis and Phytohormone Pathways with Leaf Color in Chinese Cabbage

Author:

Li Guanghuan1,Liang Hao1,Ren Xiaowei1,Ma Wei1,Lu Yin1,Zhang Ziyang1,Wang Zengfeng1,Zhao Tiantian1,Zhao Jianjun1

Affiliation:

1. State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China

Abstract

Chinese cabbage (Brassica rapa L. ssp. Pekinensis) in the genus Brassica of the family Brassicaceae (Cruciferae) originates from China and is one of the most consumed leafy vegetables in East Asian countries. The leaf color is tightly linked with its growth, development, and yield. By screening an EMS mutagenized population of Chinese cabbage inbred line A03, we identified a yellowgreen leaf mutant ygl. This mutant developed abnormal ultrastructure in chloroplasts. Transcriptome and Gene Ontology (GO) analyses unveiled that abiotic stress response and glucan metabolism pathways were enriched in ygl compared to A03. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis reveals that differentially expressed genes were mainly associated with plant hormone signal transduction, photosynthesis, and starch and sucrose metabolism. In ygl, the expression of some photosynthetic pathway genes was significantly up-regulated, while the transcription of key genes related to carbon fixation, starch syntheses, and sugar metabolism pathways, such as RBCS1A, APS1, APL3, and SUS1, was markedly down-regulated. We also found a similar reduction trend in mRNA levels of IAA19, IAA29, and ARR4 associated with auxin and cytokinin pathways. Taken together, we uncovered transcriptional profiles for some important genes that may be responsible for leaf color development, and such gene expression repertoire may be useful for further investigation into the phenotype-to-genotype link in the ygl mutant Chinese cabbage.

Funder

Science Fund for Distinguished Young Scholars of Hebei Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3