Comparative Analysis of Phospholipase D (PLD) Gene Family in Camelina sativa and Brassica napus and Its Responses in Camelina Seedlings under Salt Stress

Author:

Heidari Parviz1ORCID,Puresmaeli Fatemeh1,Vafaee Yavar2ORCID,Ahmadizadeh Mostafa3ORCID,Ensani Mohammadreza1,Ahmadinia Haniyeh1

Affiliation:

1. Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran

2. Department of Horticultural Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj 6617715175, Iran

3. Minab Higher Education Center, University of Hormozgan, Bandar Abbas 7916193145, Iran

Abstract

Phospholipases are among the important elements involved in lipid-dependent cell signaling that lead to the induction of downstream pathways. In the current study, phospholipases D (PLDs) gene family was characterized and compared in two important oilseed crops, Brassica napus and Camelina sativa. The results revealed that PLD has 33 members in Camelina sativa (CsPLD) and 41 members in Brassica napus (BnPLD). All studied PLDs showed a negative GRAVY value, indicating that PLDs are probably hydrophilic proteins. Phylogenetic analysis classified PLDs into five main subfamilies, including gamma, delta, beta, alpha, and zeta. According to evolution analysis, a different evolution process was observed between CsPLD and BnPLD. In addition, the results disclosed that most of the PLD genes have been segmentally duplicated under purifying selection. Cis-regulatory elements related to ABA and auxin responsiveness were found more in the upstream region of CsPLDs, while elements linked with MeJA responsiveness were observed more in the promoter region of BnPLDs. Analysis of the expression data showed that PLD alpha genes have a wide expression in most tissues. Quantitative expression analysis (qPCR) of CsPLD genes under salt stress, 200 mM of NaCl, was conducted in different time series. The results revealed that the CsPLD genes are involved in the response to salinity stress and their expression levels enhance with increasing salinity stress period. The outcomes of this research will be useful for future molecular works related to lipid signaling in oilseed plants.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3