Nocturnal LED Supplemental Lighting Improves Quality of Tomato Seedlings by Increasing Biomass Accumulation in a Controlled Environment

Author:

Song Jinxiu1ORCID,Zhang Rong1,Yang Fulin1,Wang Jianfeng2,Cai Wei1,Zhang Yue1

Affiliation:

1. College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

2. Key Laboratory of Facility Vegetable of Jilin Province, Jilin Academy of Vegetable and Flower Sciences, Changchun 130119, China

Abstract

Tomato (Solanum lycopersicum L. cv. Zhongza NO. 9) was used as the experimental material to investigate the effects of nocturnal LED supplemental light with the photosynthetic photon flux density (PPFD) of 100, 200, 300 μmol·m−2·s−1, and the light time of 1, 2 h on the seedling quality in a controlled environment, with seedlings without nocturnal supplemental lighting serving as the control. The results demonstrate that an increase in PPFD at night progressively enhances the plant height and leaf number of tomato seedlings, while stem diameter and leaf area initially increase and subsequently decrease. Although light time and light period-of-time at night did not significantly affect seedling morphology, PPFD and light time notably influenced chlorophyll content and net photosynthetic rate. An optimal lighting energy amount at night augmented photosynthetic capacity. However, excessive PPFD induced photoinhibition in the leaves. Additionally, appropriate nocturnal LED supplemental lighting significantly improved the antioxidant capacity of the seedlings, increased proline content, reduced malondialdehyde content, and bolstered the self-protection mechanisms of the seedlings against nocturnal light stress. Both the PPFD and light time at night promoted biomass accumulation in tomato seedlings. Specifically, when supplemental lighting was applied for 2 h at an intensity of 200 μmol·m−2·s−1, both the fresh and dry weights of the shoot and root significantly increased, and the seedling health index was highest. Therefore, appropriate nocturnal LED supplemental lighting positively impacts the health index and photosynthate accumulation of tomato seedlings, but controlling PPFD is essential to avoid photoinhibition.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

National Local Joint Engineering Research Center for Breeding and Development of New Ginseng Varieties

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3