Structure of Argon Solid Phases Formed from the Liquid State at Different Isobaric Cooling Rates

Author:

German Eugeny I.1,Tsydypov Shulun B.1,Ojovan Michael I.2ORCID,Darmaev Migmar V.13

Affiliation:

1. Institute of Mathematics, Physics and Computer Science, Banzarov Buryat State University, Smolina Str., 24a, 670000 Ulan-Ude, Russia

2. Department of Radiochemistry, Lomonosov Moscow State University, 119991 Moscow, Russia

3. Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences, 670047 Ulan-Ude, Russia

Abstract

By the method of molecular dynamics, computer simulation of the processes of isobaric cooling of argon particle systems under initial conditions with a temperature of 150 K at pressure values from 0.1 to 4 MPa to a temperature of 40 K with cooling rates of 108, 109, 1010, 1011 and 1012 K/s was performed. As a result of a computer experiment, coordinate arrays of particles were obtained, which were subjected to the procedure of three-dimensional Voronoi partitioning to identify and calculate the number of elementary cells of the crystal structure. Analysis of the structure of argon solid phases formed during isobaric cooling allowed us to deduce an estimated pattern between the concentration of FCC (face-centered cubic) cells in solid argon and the cooling rate from the liquid state. The evaluation of the orientation of the axes of translation of crystal cells in the array of particle coordinates made it possible to classify the solid phases formed as a result of cooling as single crystals, glassy media with the inclusion of clusters and single cells of FCC structures. It was revealed that during isobaric cooling at a rate not exceeding 108 K/s, argon completely crystallizes, at isobaric cooling rates of 109–1010 K/s, the union of elementary cells of the crystal structure into clusters is observed in glassy argon, and at rates of 1011 K/s and higher at pressures of 1 MPa and lower, solid vitreous phases of argon are formed in which no crystal structure cells are detected.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3