Sulforaphane Target Protein Prediction: A Bioinformatics Analysis

Author:

Lagunas-Rangel Francisco Alejandro1ORCID

Affiliation:

1. Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico

Abstract

Sulforaphane, a phytochemical found in cruciferous vegetables and various nutraceutical foods, plays a crucial role in promoting well-being and combating various diseases. Its remarkable effects are due to its intricate interactions with a wide range of proteins, some of which remain unidentified. In this study, taking advantage of bioinformatics tools for protein target prediction, we identified 11 proteins as potential targets of sulforaphane. Due to its biological relevance and their correlation with transcriptomic changes observed in sulforaphane-treated cells, the possible interaction between sulforaphane and nicotinamide phosphoribosyltransferase (NAMPT) was further investigated. A docking analysis suggested that sulforaphane is strategically positioned at the entrance of the channel through which substrates enter, thus bypassing the active site of the enzyme. By forming hydrogen bonds with residues K189, R349, and S275, sulforaphane establishes a linkage with NAMPT. Dynamic molecular analyses further corroborated these observations, illustrating that these bonds allow sulforaphane to associate with NAMPT, mimicking the behavior of a NAMPT activator (NAT), a known activating compound of this enzyme. This collective evidence suggests that sulforaphane may activate NAMPT, providing valuable insights into a possible mechanism underlying its diverse biological effects.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3