An IoT Transfer Learning-Based Service for the Health Status Monitoring of Grapevines

Author:

Morellos Antonios12,Dolaptsis Konstantinos1ORCID,Tziotzios Georgios1ORCID,Pantazi Xanthoula Eirini2ORCID,Kateris Dimitrios1ORCID,Berruto Remigio3ORCID,Bochtis Dionysis1ORCID

Affiliation:

1. Institute for Bio-Economy and Agri-Technology (IBO), Centre for Research and Technology—Hellas (CERTH), 38333 Volos, Greece

2. Laboratory of Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

3. Interuniversity Department of Regional and Urban Studies and Planning, Polytechnic and University of Turin, Viale Matttioli 39, 10125 Torino, Italy

Abstract

Grapevine is a valuable and profitable crop that is susceptible to various diseases, making effective disease detection crucial for crop monitoring. This work explores the use of deep learning-based plant disease detection as an alternative to traditional methods, employing an Internet of Things approach. An edge device, a Raspberry Pi 4 equipped with an RGB camera, is utilized to detect diseases in grapevine plants. Two lightweight deep learning models, MobileNet V2 and EfficientNet B0, were trained using a transfer learning technique on commercially available online dataset, then deployed and validated on field-site in an organic winery. The models’ performance was further enhanced using semantic segmentation with the Mobile-UNet algorithm. Results were reported through a web service using FastAPI. Both models achieved high training accuracies exceeding 95%, with MobileNet V2 slightly outperforming EfficientNet B0. During validation, MobileNet V2 achieved an accuracy of 94%, compared to 92% for EfficientNet B0. In terms of IoT deployment, MobileNet V2 exhibits faster inference time (330 ms) compared to EfficientNet B0 (390 ms), making it the preferred model for online deployment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3