Two-Step Relaxation of Non-Equilibrium Electrons in Graphene: The Key to Understanding Pump–Probe Experiments

Author:

Cunha Diogo F. P.1ORCID,Dias Rui1,Rodrigues Manuel J. L. F.1ORCID,Vasilevskiy Mikhail I.123ORCID

Affiliation:

1. Centre of Physics—CF-UM-UP and Laboratório de Física para Materiais e Tecnologias Emergentes (LaPMET), University of Minho, Campus of Gualtar, 4710-374 Braga, Portugal

2. Department of Physics, University of Minho, Campus of Gualtar, 4710-374 Braga, Portugal

3. Theory of Quantum Nanostructures Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal

Abstract

In the majority of experiments targeting nonlinear optical phenomena, the application of high-intensity pulses drives electrons in graphene into a strongly non-equilibrium state. Under these conditions, conventional perturbation theory falls short in explaining graphene’s intricate optical response because of significant deviations in electron distribution over energy states from the equilibrium Fermi-Dirac one. In this work, we present a two-step relaxation model capable of predicting the transient dynamics of graphene’s carriers out of equilibrium, from the generation of spectrally narrow populations of non-thermalized electrons and holes to the establishment of a hot-electron gas and its subsequent cooling toward equilibrium with the crystal lattice. By comparing our model calculations to experimental results, we demonstrate its reliability and relevance to pump–probe experiments, providing insights into the pivotal role of hot electrons in comprehending ultrafast dynamics in graphene.

Funder

Portuguese Foundation for Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3