Affiliation:
1. Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
Abstract
Rift Valley fever virus (RVFV) is considered to be a high biodefense priority based on its threat to livestock and its ability to cause human hemorrhagic fever. RVFV-infected livestock are also a significant risk factor for human infection by direct contact with contaminated blood, tissues, and aborted fetal materials. Therefore, livestock vaccination in the affected regions has the direct dual benefit and one-health approach of protecting the lives of millions of animals and eliminating the risk of severe and sometimes lethal human Rift Valley fever (RVF) disease. Recently, we have developed a bovine herpesvirus type 1 (BoHV-1) quadruple gene mutant virus (BoHV-1qmv) vector that lacks virulence and immunosuppressive properties due to the deletion of envelope proteins UL49.5, glycoprotein G (gG), gE cytoplasmic tail, and US9 coding sequences. In the current study, we engineered the BoHV-1qmv further by incorporating a chimeric gene sequence to express a proteolytically cleavable polyprotein: RVFV envelope proteins Gn ectodomain sequence fused with bovine granulocyte-macrophage colony-stimulating factor (GMCSF) and Gc, resulting in a live BoHV-1qmv-vectored subunit vaccine against RVFV for livestock. In vitro, the resulting recombinant virus, BoHV-1qmv Sub-RVFV, was replicated in cell culture with high titers. The chimeric Gn-GMCSF and Gc proteins expressed by the vaccine virus formed the Gn–Gc complex. In calves, the BoHV-1qmv Sub-RVFV vaccination was safe and induced moderate levels of the RVFV vaccine strain, MP12-specific neutralizing antibody titers. Additionally, the peripheral blood mononuclear cells from the vaccinated calves had six-fold increased levels of interferon-gamma transcription compared with that of the BoHV-1qmv (vector)-vaccinated calves when stimulated with heat-inactivated MP12 antigen in vitro. Based on these findings, we believe that a single dose of BoHV-1qmv Sub-RVFV vaccine generated a protective RVFV-MP12-specific humoral and cellular immune response. Therefore, the BoHV-1qmv sub-RVFV can potentially be a protective subunit vaccine for cattle against RVFV.
Funder
United States Department of Agriculture/National Institute of Food and Agriculture
Subject
Virology,Infectious Diseases
Reference32 articles.
1. Rift Valley fever: Accidental infections among laboratory workers;Smithburn;J. Immunol.,1949
2. Rift Valley fever affecting humans in South Africa: A clinicopathological study;Meyer;S. Afr. Med. J.,1977
3. Aerosolized rift valley fever virus causes fatal encephalitis in african green monkeys and common marmosets;Hartman;J. Virol.,2014
4. Synthesis, proteolytic processing and complex formation of N-terminally nested precursor proteins of the Rift Valley fever virus glycoproteins;Gerrard;Virology,2007
5. Faburay, B., LaBeaud, A.D., McVey, D.S., Wilson, W.C., and Richt, J.A. (2017). Current Status of Rift Valley Fever Vaccine Development. Vaccines, 5.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献