Electrical Conduction Behavior of High-Performance Microcellular Nanocomposites Made of Graphene Nanoplatelet-Filled Polysulfone

Author:

Abbasi HoomanORCID,Antunes MarceloORCID,Velasco JoséORCID

Abstract

Graphene nanoplatelet (GnP)-filled polysulfone (PSU) cellular nanocomposites, prepared by two different methods—namely, water vapor-induced phase separation (WVIPS) and supercritical CO2 dissolution (scCO2) foaming—were produced with a range of densities from 0.4 to 0.6 g/cm3 and characterized in terms of their structure and electrical conduction behavior. The GnP content was varied from 0 to 10 wt%. The electrical conductivity values were increased with the amount of GnP for the three different studied foam series. The highest values were found for the microcellular nanocomposites prepared by the WVIPS method, reaching as high as 8.17 × 10−2 S/m for 10 wt% GnP. The variation trend of the electrical conductivity for each series was analyzed by applying both the percolation and the tunneling models. Comparatively, the tunneling model showed a better fitting in the prediction of the electrical conductivity. The preparation technique of the cellular nanocomposite affected the resultant cellular structure of the nanocomposite and, as a result, the porosity or gas volume fraction (Vg). A higher porosity resulted in a higher electrical conductivity, with the lightest foams being prepared by the WVIPS method, showing electrical conductivities two orders of magnitude higher than the equivalent foams prepared by the scCO2 dissolution technique.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3