Affiliation:
1. Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
2. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) materials have exceptional optoelectronic and structural properties, which allow them to be utilized in several significant applications in energy, catalyst, and high-performance optoelectronic devices. Among other properties, the nonlinear optical properties are gaining much attention in the research field. In this work, a unique pentagonal TMD material, palladium disulfide (PdS2), is employed as a saturable absorber (SA) in an ytterbium-doped fiber (YDF) laser cavity and mode-locked laser pulse is generated. At first, liquid phase exfoliation is performed to prepare PdS2 nanoflakes. Afterward, the PdS2-nanoflakes solution was incorporated in the side-polished fiber (SPF) to form SPF-based PdS2-SA. By utilizing this SA, a highly stable mode-locked laser pulse is realized at pump power of 160 mW, which has a center wavelength of 1033 nm and a 3-dB spectral bandwidth of 3.7 nm. Moreover, the pulse duration, maximum power output and corresponding single-pulse energy were determined as 375 ps, 15.7 mW and 0.64 nJ, respectively. During the experiment, the mode-locked pulse remained stable till the pump power reached a value of 400 mW and, for the regulation of power, the slope efficiency is calculated at about 4.99%. These results indicate that PdS2 material is a promising nonlinear optical material for ultrafast optical applications in the near-infrared (NIR) region.
Funder
Science, Technology and Innovation Commission of Shenzhen Municipality
Research Grants Council, University Grants Committee
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献