A Dominant-Negative Mutant of ANXA7 Impairs Calcium Signaling and Enhances the Proliferation of Prostate Cancer Cells by Downregulating the IP3 Receptor and the PI3K/mTOR Pathway

Author:

Srivastava Meera1ORCID,Bera Alakesh1ORCID,Eidelman Ofer1,Tran Minh B.1,Jozwik Catherine1,Glasman Mirta1,Leighton Ximena1,Caohuy Hung1,Pollard Harvey B.1

Affiliation:

1. Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Uniformed Services University of Health Sciences (USUHS) School of Medicine, Bethesda, MD 20814, USA

Abstract

Annexin A7/ANXA7 is a calcium-dependent membrane fusion protein with tumor suppressor gene (TSG) properties, which is located on chromosome 10q21 and is thought to function in the regulation of calcium homeostasis and tumorigenesis. However, whether the molecular mechanisms for tumor suppression are also involved in the calcium- and phospholipid-binding properties of ANXA7 remain to be elucidated. We hypothesized that the 4 C-terminal endonexin-fold repeats in ANXA7 (GX(X)GT), which are contained within each of the 4 annexin repeats with 70 amino acids, are responsible for both calcium- and GTP-dependent membrane fusion and the tumor suppressor function. Here, we identified a dominant-negative triple mutant (DNTM/DN-ANXA7J) that dramatically suppressed the ability of ANXA7 to fuse with artificial membranes while also inhibiting tumor cell proliferation and sensitizing cells to cell death. We also found that the [DNTM]ANA7 mutation altered the membrane fusion rate and the ability to bind calcium and phospholipids. In addition, in prostate cancer cells, our data revealed that variations in phosphatidylserine exposure, membrane permeabilization, and cellular apoptosis were associated with differential IP3 receptor expression and PI3K/AKT/mTOR modulation. In conclusion, we discovered a triple mutant of ANXA7, associated with calcium and phospholipid binding, which leads to the loss of several essential functions of ANXA7 pertinent to tumor protection and highlights the importance of the calcium signaling and membrane fusion functions of ANXA7 for preventing tumorigenesis.

Funder

Collaborative Health Initiative Research Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3