De Novo Computational Design of a Lipase with Hydrolysis Activity towards Middle-Chained Fatty Acid Esters

Author:

Huang Jinsha1ORCID,Xie Xiaoman1,Zheng Zhen1,Ye Luona1,Wang Pengbo1,Xu Li1ORCID,Wu Ying1,Yan Jinyong1ORCID,Yang Min1ORCID,Yan Yunjun1ORCID

Affiliation:

1. Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Innovations in biocatalysts provide great prospects for intolerant environments or novel reactions. Due to the limited catalytic capacity and the long-term and labor-intensive characteristics of mining enzymes with the desired functions, de novo enzyme design was developed to obtain industrial application candidates in a rapid and convenient way. Here, based on the catalytic mechanisms and the known structures of proteins, we proposed a computational protein design strategy combining de novo enzyme design and laboratory-directed evolution. Starting with the theozyme constructed using a quantum-mechanical approach, the theoretical enzyme-skeleton combinations were assembled and optimized via the Rosetta “inside-out” protocol. A small number of designed sequences were experimentally screened using SDS-PAGE, mass spectrometry and a qualitative activity assay in which the designed enzyme 1a8uD1 exhibited a measurable hydrolysis activity of 24.25 ± 0.57 U/g towards p-nitrophenyl octanoate. To improve the activity of the designed enzyme, molecular dynamics simulations and the RosettaDesign application were utilized to further optimize the substrate binding mode and amino acid sequence, thus keeping the residues of theozyme intact. The redesigned lipase 1a8uD1–M8 displayed enhanced hydrolysis activity towards p-nitrophenyl octanoate—3.34 times higher than that of 1a8uD1. Meanwhile, the natural skeleton protein (PDB entry 1a8u) did not display any hydrolysis activity, confirming that the hydrolysis abilities of the designed 1a8uD1 and the redesigned 1a8uD1–M8 were devised from scratch. More importantly, the designed 1a8uD1–M8 was also able to hydrolyze the natural middle-chained substrate (glycerol trioctanoate), for which the activity was 27.67 ± 0.69 U/g. This study indicates that the strategy employed here has great potential to generate novel enzymes exhibiting the desired reactions.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for HUST

Fundamental Research Funds for the Central Universities, China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3