A Comparative Study of Phase I and II Hepatic Microsomal Biotransformation of Phenol in Three Species of Salmonidae: Hydroquinone, Catechol, and Phenylglucuronide Formation

Author:

Kolanczyk Richard C.1ORCID,Solem Laura E.2,Schmieder Patricia K.1,McKim James M.1

Affiliation:

1. United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN 55804, USA

2. National Research Council, 6201 Congdon Boulevard, Duluth, MN 55804, USA

Abstract

The in vitro biotransformation of phenol at 11 °C was studied using pre-spawn adult rainbow (Oncorhynchus mykiss) (RBT), brook (Salvelinus fontinalis) (BKT), and lake trout (Salvelinus namaycush) (LKT) hepatic microsomal preparations. The incubations were optimized for time, cofactor concentration, pH, and microsomal protein concentration. Formation of Phase I ring-hydroxylation and Phase II glucuronidation metabolites was quantified using HPLC with dual-channel electrochemical and UV detection. The biotransformation of phenol over a range of substrate concentrations (1 to 180 mM) was quantified, and the Michaelis–Menten kinetics constants, Km and Vmax, for the formation of hydroquinone (HQ), catechol (CAT), and phenylglucuronide (PG) were calculated. Species differences were noted in the Km values for Phase I enzyme production of HQ and CAT, with the following rank order of apparent enzyme affinity for substrate: RBT > BKT = LKT. However, no apparent differences in the Km for Phase II metabolism of phenol to PG were detected. Conversely, while there were no apparent differences in Vmax between species for HQ or CAT formation, the apparent maximum capacity for PG formation was significantly less in LKT than that observed for RBT and BKT. These experiments provide a means to quantify metabolic activation and deactivation of xenobiotics in fish, to compare activation and deactivation reactions across species, and to act as a guide for future predictions of new chemical biotransformation pathways and rates in fish. These experiments provided the necessary rate and capacity (Km and Vmax) inputs that are required to parameterize a fish physiologically based toxicokinetic (PB-TK) model for a reactive chemical that is readily biotransformed, such as phenol. In the future, an extensive database of these rate and capacity parameters on important fish species for selected chemical structures will be needed to allow the effective use of predictive models for reactive, biotransformation chemicals in aquatic toxicology and environmental risk assessment.

Publisher

MDPI AG

Reference56 articles.

1. Sijm, D., de Bruijn, J., de Voogt, P., and de Wolf, W. (May, January 28). Biotransformation in environmental risk assessment. Proceedings of the SETAC-Europe Workshop, Noordwijkerhout, The Netherlands.

2. A physiologically based toxicokinetic model for the uptake and disposition of waterborne organic chemicals in fish;Nichols;Toxicol. Appl. Pharmacol.,1990

3. Physiologically based toxicokinetic modeling of three chlorinated ethanes in rainbow trout (Oncorhynchus mykiss);Nichols;Toxicol. Appl. Pharmacol.,1991

4. A physiologically based toxicokinetic model for three waterborne chloroethanes in the channel catfish (Ictaturus punctatus);Nichols;Aquat. Toxicol.,1993

5. Modeling the accumulation of three waterborne chlorinated ethanes in fathead minnows (Pimephales promelas): A physiologically based approach;Lien;Environ. Toxicol. Chem.,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3