A Characterization of the RNA Modification Response to Starvation under Low Temperatures in Large Yellow Croaker (Larimichthys crocea)

Author:

Ji Qun12,Xie Zhengli3,Li Lizhen12,Han Xulei1,Song Wei12

Affiliation:

1. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China

2. Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China

3. Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China

Abstract

Emerging evidence shows that N6-methyladenosine (m6A) is a post-transcriptional RNA modification that plays a vital role in regulation of gene expression, fundamental biological processes, and physiological functions. To explore the effect of starvation on m6A methylation modification in the liver of Larimichthys crocea (L. crocea) under low temperatures, the livers of L. crocea from cold and cold + fasting groups were subjected to MeRIP-seq and RNA-seq using the NovaSeq 6000 platform. Compared to the cryogenic group, the expression of RNA methyltransferases mettl3 and mettl14 was upregulated, whereas that of demethylase fto and alkbh5 was downregulated in the starved cryogenic group. A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the differentially m6A-modified genes were mainly enriched in steroid biosynthesis, DNA replication, ribosome biogenesis in eukaryotes, PPAR, ECM-receptor interaction, lysine degradation, phosphatidylinositol, and the MAPK signaling pathway, suggesting that L. crocea responds to starvation under low-temperature stress through m6A methylation modification-mediated cell growth, proliferation, innate immunity, and the maintenance of lipid homeostasis. This study advances understanding of the physiological response mechanism exerted by m6A methylation modification in starved L. crocea at low temperatures.

Funder

Marine S&T Fund of Shandong Province for Qingdao Marine Science and Technology Center

National Key R&D Program of China

Central Public-interest Scientific Institution Basal Research Fund, CAFS

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3