Effects of Acute Temperature Stress on the Expression of Related Genes in the Brain of Opsariichthys bidens

Author:

Li Qianhui1,Xiong Luomei1,Zhu Yechen1,Zheng Anrui1,Zheng Shanjian1

Affiliation:

1. College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China

Abstract

Opsariichthys bidens (O. bidens) is a fish species native to China and sensitive to temperature changes. In this study, the effects of acute temperature stress on brain gene expression in O. bidens were investigated by sampling brain tissues from specimens exposed to three different temperatures (15 °C, 25 °C, and 35 °C) for varying durations of 2 h, 4 h, 6 h, and 8 h. The study focused on analyzing the expression patterns of key genes implicated in neural function and stress response, including brain-derived neurotrophic factor (BDNF), c-FOS, heat shock proteins (HSP70, HSP90), endoplasmic reticulum stress markers (IRE1, GRP78), oxidative stress enzymes (CAT, SOD), and apoptotic regulators (caspase3, Bax). The findings revealed that upon exposure to acute heat stress, the expression levels of the aforementioned genes in the brain of O. bidens were up-regulated within 2 h, peaking at the 4-h mark. Conversely, following acute cold stress, the expression of c-FOS, BDNF, HSP70, HSP90, SOD, and CAT genes increased significantly after 4 h, while caspase3 expression was notably elevated at the 6-h mark, with no significant impact observed on Bax, IRE1, or GRP78 gene expression levels. The study suggested that the brain of O. bidens responds to high temperatures through mechanisms involving neural activation, heat shock proteins, endoplasmic reticulum stress, oxidative stress, and apoptosis. Similarly, adaptation to low temperatures by O. bidens’ brain was associated with neural activation, regulation of heat shock proteins, oxidative stress responses, and apoptotic processes. Overall, this research aimed to elucidate the impact of temperature stress on brain physiology and the adaptive mechanisms of O. bidens at the genetic level, providing a foundational understanding of its temperature adaptation strategies.

Funder

‘Sannong Jiufang’ Project of Zhejiang Province of China

Key Science and Technology Projects in Longyou County, Zhejiang Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3