Controlling COVID-19 Spreading: A Three-Level Algorithm

Author:

Dieguez Giovanni1,Batistela Cristiane2,Piqueira José R. C.1ORCID

Affiliation:

1. Department of Telecommunications and Control Engineering, São Paulo, Polytechnic School, University of São Paulo, São Paulo 05508900, Brazil

2. Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo, São Paulo 09606070, Brazil

Abstract

As the main methods of the coronavirus disease (COVID-19) transmission are air and physical contact, actions to mitigate and suppress its spread must be developed in order to change population dynamics and provide efficient control strategies. Here, these actions are described as a simple heuristic framework to establish public policies. Two control systems were studied: the first organized in the form of an algorithm stratified into three levels and the second as a minimization problem similar to optimal control strategies, applied to both social distancing and vaccination. The possible effects of these actions are modeled and applied to an extension of the Susceptible - Infected - Removed (SIR) compartmental model. The control system is developed, which is organized in the form of an algorithm stratified into three levels. These levels intend to represent social distancing strategies implemented by sanitary authorities around the globe, representing stronger or weaker grades of isolation intensity according to the ability of the healthcare system to cope with symptomatic individuals. The algorithm control is applied in a simulation, and the results give evidence of the effectiveness of the procedures adopted against the coronavirus. The model dynamics are analyzed and validated with simulations considering parameters obtained from epidemiological data from Brazil and Uruguay and in a more detailed way for three Brazilian states: São Paulo, Minas Gerais and Rio de Janeiro. The model was validated using cumulative data on cases and deaths. For cases of death, the results were satisfactory, while for case data, the response was reasonable, considering the possibility of adding delays or variations in parameters in the model. In addition, the effective reproduction number was proposed for the cities studied in Brazil, the result being relevant because it has a qualitative behavior similar to that published by official centers. This paper also discusses the implementation and optimization of social distancing and vaccination control strategies, considering different parameters and their effects on reducing the number of cases and deaths. Model simulations present promising results for developing strategies to attack COVID-19 dissemination.

Funder

São Paulo Research Foundation

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3