Internal and External Validation of Machine Learning Models for Predicting Acute Kidney Injury Following Non-Cardiac Surgery Using Open Datasets

Author:

Lee Sang-Wook1,Jang Jaewon2,Seo Woo-Young2,Lee Donghee1,Kim Sung-Hoon13

Affiliation:

1. Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea

2. Biomedical Engineering Research Center, Biosignal Analysis & Perioperative Outcome Research (BAPOR) Laboratory, Asan Institute for Lifesciences, Seoul 05505, Republic of Korea

3. Department of Anesthesiology and Pain Medicine, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea

Abstract

This study developed and validated a machine learning model to accurately predict acute kidney injury (AKI) after non-cardiac surgery, aiming to improve patient outcomes by assessing its clinical feasibility and generalizability. We conducted a retrospective cohort study using data from 76,032 adults who underwent non-cardiac surgery at a single tertiary medical center between March 2019 and February 2021, and used data from 5512 patients from the VitalDB open dataset for external model validation. The predictive variables for model training consisted of demographic, preoperative laboratory, and intraoperative data, including calculated statistical values such as the minimum, maximum, and mean intraoperative blood pressure. When predicting postoperative AKI, our gradient boosting machine model incorporating all the variables achieved the best results, with AUROC values of 0.868 and 0.757 for the internal and external validations using the VitalDB dataset, respectively. The model using intraoperative data performed best in internal validation, while the model with preoperative data excelled in external validation. In this study, we developed a predictive model for postoperative AKI in adult patients undergoing non-cardiac surgery using preoperative and intraoperative data, and external validation demonstrated the efficacy of open datasets for generalization in medical artificial modeling research.

Funder

Korea Health Industry Development Institute

Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3