Survey on Motion Planning for Multirotor Aerial Vehicles in Plan-Based Control Paradigm

Author:

Kulathunga Geesara12ORCID,Klimchik Alexandr3ORCID

Affiliation:

1. Institute of Robotics and Computer Vision, Innopolis University, Innopolis 420500, Russia

2. Lincoln Institute for Agri-Food Tech, Lincoln Centre for Autonomous Systems, University of Lincoln, Riseholme Park, Lincoln LN2 2LG, UK

3. School of Computer Science, Lincoln Centre for Autonomous Systems, University of Lincoln, Lincoln LN6 7TS, UK

Abstract

In general, optimal motion planning can be performed both locally and globally. In such a planning, the choice in favor of either local or global planning technique mainly depends on whether the environmental conditions are dynamic or static. Hence, the most adequate choice is to use local planning or local planning alongside global planning. When designing optimal motion planning, both local and global, the key metrics to bear in mind are execution time, asymptotic optimality, and quick reaction to dynamic obstacles. Such planning approaches can address the aforementioned target metrics more efficiently compared to other approaches, such as path planning followed by smoothing. Thus, the foremost objective of this study is to analyze related literature in order to understand how the motion planning problem, especially the trajectory planning problem, is formulated when being applied for generating optimal trajectories in real-time for multirotor aerial vehicles, as well as how it impacts the listed metrics. As a result of this research, the trajectory planning problem was broken down into a set of subproblems, and the lists of methods for addressing each of the problems were identified and described in detail. Subsequently, the most prominent results from 2010 to 2022 were summarized and presented in the form of a timeline.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3