Recapture Lysosomal Enzyme Deficiency via Targeted Gene Disruption in the Human Near-Haploid Cell Line HAP1

Author:

Brown Annie,Zhang Jiayi,Lawler Brendan,Lu Biao

Abstract

Background: Advancement in genome engineering enables rapid and targeted disruption of any coding sequences to study gene functions or establish human disease models. We explored whether this approach can be used to study Gaucher disease, one of the most common types of lysosomal storage diseases (LSDs) in a near-haploid human cell line (HAP1). Results: CRISPR-Cas9 targeting to coding sequences of β-glucocerebrosidase (GBA), the causative gene of Gaucher disease, resulted in an insertional mutation and premature termination of GBA. We confirmed the GBA knockout at both the gene and enzyme levels by genotyping and GBA enzymatic assay. Characterization of the knockout line showed no significant changes in cell morphology and growth. Lysosomal staining revealed more granular lysosomes in the cytosol of the GBA-knockout line compared to its parental control. Flow cytometry analysis further confirmed that more lysosomes accumulated in the cytosol of the knockout line, recapturing the disease phenotype. Finally, we showed that this knockout cell line could be used to evaluate a replacement therapy by recombinant human GBA. Conclusions: Targeted gene disruption in human HAP1 cells enables rapid establishment of the Gaucher model to capture the key pathology and to test replacement therapy. We expect that this streamlined method can be used to generate human disease models of other LSDs, most of which are still lacking both appropriate human disease models and specific treatments to date.

Funder

National Institute of General Medical Sciences

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3