Remote Sensing-Based Agricultural Water Accounting for the North Jordan Valley

Author:

Al-Bakri Jawad T.ORCID,D’Urso GuidoORCID,Batchelor Charles,Abukhalaf Motasem,Alobeiaat Adel,Al-Khreisat Areej,Vallee Domitille

Abstract

Remote sensing can provide important and updated information for agricultural water accounting (AWA). In this study, data from the open-access portal (WaPOR) of the Food and Agricultural Organization was used in AWA to assess levels of agricultural water consumption and to provide possible solutions for water deficiency in the North Jordan Valley (NJV). Consolidated procedures have been applied to complement and validate the WaPOR products. These included the use of climatic and ground data, the multispectral remote-sensing data of Sentinel-2 and Landsat 8 to derive land use/cover maps, GIS layers, and calibrated evapotranspiration (ET) estimates using the surface energy balance algorithm for land (SEBAL). The data of water inflows and outflows were analyzed using the water accounting plus (WA+) system. Results showed that the WaPOR data of actual ET and interception (AETI) were highly correlated with SEBAL-ET, with WaPOR data overestimating ET for irrigated areas. Precipitation data from WaPOR, on the other hand, were underestimating inflow from rainfall, although significant correlations were observed between these data and rainfall records. As a result, the quality of WaPOR data affected the outputs from agricultural water accounting. The main impact on water accounting outputs was the underestimation of percolated water that could be utilized as a possible solution to water deficiency in the NJV. In addition, the water accounting performance indicators were relatively affected, although they reflected the nature of the study area where water deficiency predominated as a result of inter-basin transfer. The study compared outputs from water accounting in terms of the possible solutions to water deficiency in the NJV and concluded that considerable amounts of recoverable water could be developed when compared with the option of developing surface water from the side wadis. Also, it emphasized the important role of remote-sensing sources for providing information for AWA needed for improved water management and governance.

Funder

ERANETMED3 EO-TIME (Earth Observation Technologies for Irrigation in Mediterranean Environment), Italian Ministry University and Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference56 articles.

1. Geospatial Techniques for Improved Water Management in Jordan

2. Water spread mapping of multiple lakes using remote sensing and satellite data

3. Utilizing the Available Open-Source Remotely Sensed Data in Assessing the Wildfire Ignition and Spread Capacities of Vegetated Surfaces in Romania

4. Water Accounting and Auditing: A Sourcebook (Revised Edition), Land and Water Division;Batchelor,2017

5. Water Accounting through Remote Sensing. A Background Report on Water Accounting Plus (WA+) in the Awash River Basin, Land and Water Division;Dost,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3