Structural Basis for the Inhibition of SARS-CoV-2 Mpro D48N Mutant by Shikonin and PF-07321332

Author:

Zhao Zhenyu1,Zhu Qinyao2,Zhou Xuelan1ORCID,Li Wenwen1,Yin Xiushan2,Li Jian1

Affiliation:

1. College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China

2. Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China

Abstract

Preventing the spread of SARS-CoV-2 and its variants is crucial in the fight against COVID-19. Inhibition of the main protease (Mpro) of SARS-CoV-2 is the key to disrupting viral replication, making Mpro a promising target for therapy. PF-07321332 and shikonin have been identified as effective broad-spectrum inhibitors of SARS-CoV-2 Mpro. The crystal structures of SARS-CoV-2 Mpro bound to PF-07321332 and shikonin have been resolved in previous studies. However, the exact mechanism regarding how SARS-CoV-2 Mpro mutants impact their binding modes largely remains to be investigated. In this study, we expressed a SARS-CoV-2 Mpro mutant, carrying the D48N substitution, representing a class of mutations located near the active sites of Mpro. The crystal structures of Mpro D48N in complex with PF-07321332 and shikonin were solved. A detailed analysis of the interactions between Mpro D48N and two inhibitors provides key insights into the binding pattern and its structural determinants. Further, the binding patterns of the two inhibitors to Mpro D48N mutant and wild-type Mpro were compared in detail. This study illustrates the possible conformational changes when the Mpro D48N mutant is bound to inhibitors. Structural insights derived from this study will inform the development of new drugs against novel coronaviruses.

Funder

National Natural Science Foundation of China

Jiangxi Natural Science Foundation for Distinguished Young Scholars

Jiangxi Key Research and Development Program

Jiangxi “Double Thousand Plan”

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3