Abstract
Solar air heater is considered to be the most popular and widely used solar thermal system. Solar air heater (SAH) can be used in many applications, ranging from domestic to industrial purposes. However, it seems that the viability of SAH is not feasible due to the following two reasons: (i) the low convective heat transfer coefficient at the absorber plate is the reason that causes a low heat transfer rate to the flowing air, and (ii) the high temperature of the absorber plate insists on high heat losses, thus, reducing the thermal efficiency. The convective coefficient can be augmented by placing turbulators/roughness on the absorber plate, which induces turbulence in the flow passage near the absorber plate by disrupting and destabilizing the laminar sublayer. This comprehensive review has been presented to summarize the studies on artificial roughness/turbulators geometries to enhance the heat transfer rate. Various rib configurations (such as grits, grooves, blockages, baffles, winglets, protrusions, twisted taps, dimples, and mesh wires) and distinct arrangements of rib roughness (such as inclined, transverse, V shape, with gap) have been reviewed to present heat transfer and friction characteristics. Additionally, thermal efficiency and thermohydraulic efficiency (in terms of net effective efficiency) of various artificial roughnesses and rib configurations are presented under distinct operating conditions for comparing purposes. This comparative study has been presented to assess the most desirable ribs and their configurations. On the basis of net effective efficiency, a multiarc rib with gaps is found to be the best configuration among all and have the highest thermal and net effective efficiency of around 79%.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献