A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater

Author:

Karmveer ,Gupta Naveen Kumar,Alam Tabish,Cozzolino RaffaelloORCID,Bella Gino

Abstract

Solar air heater is considered to be the most popular and widely used solar thermal system. Solar air heater (SAH) can be used in many applications, ranging from domestic to industrial purposes. However, it seems that the viability of SAH is not feasible due to the following two reasons: (i) the low convective heat transfer coefficient at the absorber plate is the reason that causes a low heat transfer rate to the flowing air, and (ii) the high temperature of the absorber plate insists on high heat losses, thus, reducing the thermal efficiency. The convective coefficient can be augmented by placing turbulators/roughness on the absorber plate, which induces turbulence in the flow passage near the absorber plate by disrupting and destabilizing the laminar sublayer. This comprehensive review has been presented to summarize the studies on artificial roughness/turbulators geometries to enhance the heat transfer rate. Various rib configurations (such as grits, grooves, blockages, baffles, winglets, protrusions, twisted taps, dimples, and mesh wires) and distinct arrangements of rib roughness (such as inclined, transverse, V shape, with gap) have been reviewed to present heat transfer and friction characteristics. Additionally, thermal efficiency and thermohydraulic efficiency (in terms of net effective efficiency) of various artificial roughnesses and rib configurations are presented under distinct operating conditions for comparing purposes. This comparative study has been presented to assess the most desirable ribs and their configurations. On the basis of net effective efficiency, a multiarc rib with gaps is found to be the best configuration among all and have the highest thermal and net effective efficiency of around 79%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3